RESPIRACIÓN
a respiración es el proceso por el cual ingresamos aire (que contiene oxígeno) a nuestro organismo y sacamos de él aire rico en dióxido de carbono. Un ser vivo puede estar varias horas sin comer, dormir o tomar agua, pero no puede dejar de respirar más de tres minutos. Esto grafica la importancia de la respiración para nuestra vida.
Respiración anaeróbica
La respiración aeróbica es el proceso responsable de que la mayoría de los seres vivos, los llamados por ello aerobios, requieran oxígeno. La respiración aeróbica es propia de los organismos eucariontes en general y de algunos tipos de bacterias.
Etapas de la respiración aeróbica
Glucolisis
Durante la glucólisis, una molécula de glucosa es oxidada y dividida en dos moléculas de ácido pirúvico (piruvato). En esta ruta metabólica se obtienen dos moléculas netas de ATP y se reducen dos moléculas de NAD+; el número de carbonos se mantiene constante (6 en la molécula inicial de glucosa, 3 en cada una de las moléculas de ácido pirúvico). Todo el proceso se realiza en el citosol de la célula.
Descarboxilación oxidativa del ácido pirúvico
Este proceso se repite dos veces, una para cada molécula de piruvato en que se escindió la glucosa.
Ciclo de Krebs
Es un ciclo metabólico de importancia fundamental en todas las células que utilizan oxígeno durante el proceso de respiración celular.
En estos organismos aeróbicos, el ciclo de Krebs es el anillo de conjunción de las rutas metabólicas responsables de la degradación y desasimilación de los carbohidr atos, las grasas y las proteínas en anhídrido carbónico y agua, con la formación de energía química.
Etapas del Ciclo de Krebs
Reacción 1: Citrato sintasa (De oxalacetato a citrato)
El sitio activo de la enzima, activa el acetil-CoA para hacerlo afín a un centro carbonoso del oxalacetato. Como consecuencia de la unión entre las dos moléculas, el grupo tioéster (CoA) se hidroliza, formando así la molécula de citrato.
Reacción 2: Aconitasa (De citrato a isocitrato)
La aconitasa cataliza la isomerización del citrato a isocitrato, por la formación de cis-aconitato. La enzima cataliza también la reacción inversa, pero en el ciclo de Krebs tal reacción es unidireccional a causa de la ley de acción de masa: las concentraciones (en condiciones estándar) de citrato (91%), del intermediario cis-aconitato (3%) y de isocitrato (6%), empujan decididamente la reacción hacia la producción de isocitrato.
Reacción 3: Isocitrato deshidrogenasa (De isocitrato a oxoglutarato)
La isocitrato deshidrogenasa mitocondrial es una enzima dependiente de la presencia de NAD+ y de Mn2+ o Mg2+. Inicialmente, la enzima cataliza la oxidación del isocitrato a oxalsuccinato, lo que genera una molécula de NADH a partir de NAD+. Sucesivamente, la presencia de un ión bivalente, que forma un complejo con los oxígenos del grupo carboxilo en posición alfa, aumenta la electronegatividad de esa región molecular. Esto genera una reorganización de los electrones en la molécula, con la consiguiente rotura de la unión entre el carbono en posición gamma y el grupo carboxilo adyacente.
Reacción 4: α-cetoglutarato deshidrogenasa (De oxoglutarato a Succinil-CoA)
Después de la conversión del isocitrato en α-cetoglutarato se produce una segunda reacción de descarboxilación oxidativa, que lleva a la formación de succinil CoA. La descarboxilación oxidativa del α-chetoglutarato es muy parecida a la del piruvato, otro α-cetoácido.
La α-cetoglutarato deshidrogenasa (o, más correctamente, oxoglutarato deshidrogenasa), está compuesta de tres enzimas diferentes:
* Subunidad E1: las dos cetoglutarato deshidrogenasas.
* Subunidad E2: la transuccinilasa.
(La subunidad E1 y E2 presentan una gran homología con las de la piruvato deshidrogenasa.)
* Subunidad E3: la dihidrolipoamida deshidrogenasa, que es el mismo polipéptido presente en el otro complejo enzimático.
Reacción 5: Succinil-CoA sintetasa (De Succinil-CoA a succinato)
El succinil-CoA es un tioéster a alta energía (su ΔG°′ de hidrólisis está en unos -33.5 kJ mol-1 , parecido al del ATP que es de -30.5 kJ mol-1). La citrato sintasa se sirve de un intermediario con tal unión a alta energía para llevar a cabo la fusión entre una molécula con dos átomos de carbono (acetil-CoA) y una con cuatro (oxalacetato). La enzima succinil-CoA sintetasa se sirve de tal energía para fosforilar un nucleósido difosfato purinico como el GDP.
El GTP está implicado principalmente en las rutas de transducción de señales, pero su papel en un proceso energético como el ciclo de Krebs es, en cambio, esencialmente trasladar grupos fosfato hacia el ATP, en una reacción catalizada por la enzima nucleósid difosfoquinasa.
Reacción 6: Succinato deshidrogenasa (De succinato a fumarato)
La parte final del ciclo consiste en la reorganización de moléculas a cuatro átomos de carbono hasta la regeneración del oxalacetato. Para que eso sea posible, el grupo metilo presente en el succinato tiene que convertirse en un carbonilo. Como ocurre en otras rutas, por ejemplo en la beta oxidación de los ácidos grasos, tal conversión ocurre mediante tres pasos: una primera oxidación, una hidratación y una segunda oxidación. Estos tres pasos, además de regenerar oxalacetato, permiten la extracción ulterior de energía mediante la formación de FADH2 y NADH.
Reacción 7: Fumarasa (De fumarato a L-malato)
La fumarasa cataliza la adición en trans de un protón y un grupo OH- procedentes de una molécula de agua. La hidratación del fumarato produce L-malato.
Reacción 8: Malato deshidrogenasa (De L-malato a oxalacetato)
La última reacc ión del ciclo de Krebs consiste en la oxidación del malato a oxalacetato. La reacción, catalizada por la malato deshidrogenasa, utiliza otra molécula de NAD+ como aceptor de hidrógeno, produciendo NADH.
Cadena respiratoria y fosforilación oxidativa
Son las últimas etapas de la respiración aeróbica y tienen dos finalidades básicas:
- Reoxidar las coenzimas que se han reducido en las etapas anteriores (NADH y FADH2) con el fin de que estén de nuevo libres para aceptar electrones y protones de nuevos substratos oxidables.
- Producir energía utilizable en forma de ATP.
Estos dos fenómenos están íntimamente relacionados y acoplados mutuamente. Se producen en una serie de complejos enzimáticos situados (en eucariotas) en la membrana interna de la mitocondria; cuatro complejos realizan la oxidación de los mencionados coenzimas transportando los electrones y aprovechando su energía para bombear protones desde la matriz mitocondrial hasta el espacio intermembrana. Estos protones solo pueden regresar a la matriz a través de la ATP sintasa, enzima que aprovecha el gradiente electroquímico creado para fosforilar el ADP a ATP, proceso conocido como fosforilación oxidativa.
Los electrones y los protones implicados en estos procesos son cedidos definitivamente al O2 que se reduce a agua. Nótese que el oxígeno atmosférico obtenido por ventilación pulmonar tiene como única finalidad actuar como aceptor final de electrones y protones en la respiración aerobia.
Respiración anaeróbica
Utilización de sulfato como aceptor de electrones
La utilización de sulfato como aceptor de electrones es una habilidad rara, restringida al género Desulfovibrio y algunas especies de Clostridium. Todas estas bacterias son anaeróbicas estrictas, de modo que la reducción del sulfato no es una alternativa de su metabolismo, como lo es la reducción del nitrato. La reacción es la siguiente:
SO42– + 8e– + 8H+ → S2– + 4H2O
Utilización de dióxido de carbono como aceptor de electrones
4H2 + CO2 → CH4 + 2H2O
El hidrógeno no es un gas común en la biosfera, de modo que estos microorganismos habitan lugares muy específicos como en sedimentos anaerobios del fondo de lagos y pantanos, o en el tubo digestivo de los rumiantes, donde otros microorganismos producen el H2 libre que precisan.
Utilización de ion férrico como aceptor de electrones
El ion férrico (Fe3+) puede ser utilizado por varias bacterias como aceptor de electrones, reduciéndolo a ion ferroso (Fe2+); este proceso lo realizan muchos de los microorganismos que reducen nitrato. El ion férrico se halla en el suelo y las rocas, muchas veces formando hidróxido férrico (Fe(OH)3) insoluble; en condiciones anaeróbicas, estas bacterias pueden reducirlo al estado ferroso. El ion ferrosos es mucho más soluble que el férrico, con lo cual el hierro se moviliza, siendo este un primer paso importante en la formación de un tipo de depósito mineral llamado hierro de los pantanos.
Fotosíntesis
Es la conversión de materia inorgánica en materia orgánica gracias a la energía que aporta la luz. En este proceso la energía luminosa se transforma en energía química estable, siendo el adenosín trifosfato (ATP) la primera molécula en la que queda almacenada esa energía química. Con posterioridad, el ATP se usa para sintetizar moléculas orgánicas de mayor estabilidad.
Los orgánulos citoplasmáticos encargados de la realización de la fotosíntesis son los cloroplastos, unas estructuras polimorfas y de color verde (esta coloración es debida a la presencia del pigmento clorofila) propias de las células vegetales.
Fase luminosa
Es la primera etapa de la fotosíntesis, que convierte la energía solar en energía química. La luz es absorbida por complejos formados por clorofilas y proteínas. Estos complejos clorofila-proteína se agrupan en unidades llamadas fotosistemas, que se ubican en los tilacoides (membranas internas) de los cloroplastos. Se denomina fase luminosa o clara, ya que al utilizar la energía lumínica, sólo puede llevarse a cabo en condiciones de alta luminosidad, ya sea natural o artificial.
Fase oscura
Son un conjunto de reacciones independientes de la luz (mal llamadas reacciones oscuras porque pueden ocurrir tanto de día como de noche, mas se llaman así por la marginación fotogénica ya que se desarrolla dentro de las células de las hojas y no en la superficie celular de las mismas) que convierten el dióxido de carbono y otros compuestos en glucosa. Estas reacciones, a diferencia de las reacciones lumínicas (fase luminosa o fase clara), no requieren la luz para producirse (de ahí el nombre de reacciones oscuras). Estas reacciones toman los productos de la fase luminosa (principalmente el ATP y NADPH) y realizan más procesos químicos sobre ellos. Las reacciones oscuras son dos: la fijación del carbono y el ciclo de Calvin.
Fijación del carbono
La fijación del carbono es el primer paso de las reacciones oscuras. El carbono proveniente del CO2 este es "fijado" dentro de un gran carbohidrato. Tres pueden ser los caminos (procesos) que existen para que este tipo de reacción ocurra: Fijación del carbono C3 (la más común), fijación del carbono C4, y CAM.
Ciclo de Calvin
Es el proceso en el cual el dióxido de carbono se incorpora a la ribulosa-1,5-bisfosfato que acaba rindiendo una molécula neta de glucosa, que la planta usa como energía (respiración mitocondrial) y como fuente de carbono, y de la cual depende la mayor parte de la vida en la Tierra. Este proceso de divide en tres etapas:
1. Fase carboxilativa: En esta fase el CO2 se incorpora a una molécula de 5 átomos de carbono, la ribulosa-1, 5-bifosfato para producir dos moléculas de 3-fosfoglicerato en una reacción catalizada por la enzima rubisco.
2. Fase reductora: En esta fase se reduce el CO2, incorporando en forma de grupo carboxilo al 3-fosfoglicerato, utilizando para ello el ATP y el NADPH producidos en la fase lumínica. El producto final son dos moléculas de gliceraldehído-3-fosfato.
3. Fase regenerativa: En esta fase, parte del gliceraldehído-3-fosfato obtenido en la fase anterior será convertido, posteriormente, en glucosa-6-fosfato, y parte se utilizara para regenerar la ribulosa-1, 5-bifosfato, que quedara disponible para fijar más moléculas de CO2 en cada vuelta.
FUENTES: